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Lattices and quadratic forms

Let F be a totally real number field with ring of integers R = ZF .
Let Q : V → F be a totally positive definite quaternary
(dimF V = 4) quadratic space with associated bilinear form

T (x , y) := Q(x + y)− Q(x)− Q(y).

Let Λ ⊆ V be an even integral lattice, so that Q(Λ) ⊆ R.
Define disc(Λ) = 〈det[T ]B : B ⊆ Λ〉 ⊆ R.

Theorem (Hecke (1940))

If F = Q, N prime, and disc(Λ) = N2, then

θΛ(z) = θΛ,1(z) =
∑
λ∈Λ

qQ(λ) ∈ M2(N), q = e2πiz



Quaternion algebras

Let B be definite quaternion algebra over F , O an R-order in B.
Two right O-ideals I , J are isomorphic, written I 'r J, if there
exists α ∈ B× such that I = αJ.
Let

Idlr (O) = {I ⊆ B : Ip 'r Op for all p}
be the set of locally principal right O-ideals.
The (right) class set cls(O) = Idlr (O)/ ' is the set of (global)
isomorphism classes in Idlr (O).
Then nrd : B → F is a totally positive definite quadratic space,
and for every I ∈ Idlr (O), 1

nrd(I ) I is an even integral lattice.

Conjecture (Hecke (1940))

If N is prime, disc(B) = N, O maximal order, then

{θΛ1 − θΛ2 : Λ1,Λ2 ∈ cls(O)}

generate S2(N).



Eichler’s Basis Problem

Example (Eichler (1955))

When N = 37, cls(O) = {[I1], [I2], [I3]}, with θI2 = θI3 , while
dim S2(37) = 2. Hecke’s conjecture is false.

Theorem (Eichler (1955))

For prime N, there exist lattices {Λi} of discriminant N2 such that
{θΛi
− θΛj

} generate S2(N).

Theorem (Hijikata, Pizer, and Shemanske (1989))

For all N, there exist lattices {Λi} of discriminant N2 such that
{θΛi
− θΛj

} and their twists generate S2(N, χ).



Genus and Class set

We define the orthogonal group

O(V ) = {g ∈ GL(V ) : Q(gv) = Q(v)}
O(Λ) = {g ∈ O(V ) : gΛ = Λ}

and write SO(V ) and SO(Λ) for those with det(g) = 1.
Lattices Λ,Π are isometric, written Π ' Λ, if there exists
g ∈ O(V ) such that gΛ = Π.
The genus of Λ ⊆ V is

gen(Λ) := {Π ⊆ V : Λp ' Πp for all p}.

The class set cls(Λ) = gen(Λ)/ ' is the set of (global) isometry
classes in gen(Λ).



Orthogonal point of view

Theorem (Eichler (1955))

If N is prime, disc(Λ) = N2, then

{θΛ1 − θΛ2 : Λ1,Λ2 ∈ cls(Λ)}

generate S2(N).

What happens for disc(Λ) 6= � ?

θ is not injective. Can we get modular forms without θ?



Neighbors

Kneser’s theory of pk -neighbors gives an effective method to
compute the class set.
Let p - disc(Λ) be a prime; p | 2 is OK.
We say that an integral lattice Π ⊆ V is a pk-neighbor of Λ, and
write Π ∼pk Λ if

Λ/(Λ ∩ Π) ' (R/pR)k ' Π/(Λ ∩ Π),

If Λ ∼pk Π then Π ∈ gen(Λ).
Moreover, there exists S such that every [Π] ∈ cls(Λ) is an
iterated S-neighbor of Λ.

Λ ∼p1 Λ1 ∼p2 · · · ∼pr Λr ' Π

with pi ∈ S . Typically may take S = {p}.



Example - Computing the class set

Let Λ = Z4 with the quadratic form

Q(x1, x2, x3, x4) = x2
1 + x1x2 + x2

2 + x2
3 + x1x4 + x3x4 + 3x2

4

and bilinear form given by Let

Λ =


2 1 0 1
1 2 0 0
0 0 2 1
1 0 1 6


Thus disc(Λ) = 29. We have # cls(Λ) = 2, with the nontrivial
class represented by the 2-neighbor

Λ′ =
1

2
Z(e2 + e4) + 2Ze3 + Ze1 + Ze4.

with corresponding quadratic form

Q(x) = x2
1 + x1x2 + 4x2

2 + x1x3 + x2
3 + 3x1x4 + 2x2x4 + x3x4 + 3x2

4



Orthogonal modular forms

The space of orthogonal modular forms of level Λ (and trivial
weight) is

M(Λ) := {φ : cls(Λ)→ Q} ' Qh(Λ)

For p - disc(Λ) define the Hecke operator

Tpk : M(Λ)→ M(Λ)

φ 7→

[Λ′] 7→
∑

Π′∼
pk

Λ′

φ([Π′])


The Hecke operators commute and are self-adjoint, hence there is
a basis of simultaneous eigenvectors - eigenforms. (Gross, 1999)



Example - square discriminant

Let Λ have the Gram matrix

[TΛ] =


2 0 0 1
0 2 1 0
0 1 6 0
1 0 0 6


so that disc(Λ) = detT = 112. Then h(Λ) = 3.
Write cls(Λ) = {[Λ] = [Λ1], [Λ2], [Λ3]}. Then a basis of eigenforms
is given by

φ1 = [Λ1] + [Λ2] + [Λ3], φ2 = 4[Λ1]− 6[Λ2] + 9[Λ3]

φ3 = 4[Λ1] + [Λ2]− 6[Λ3],

and we have

θ(φ1) =
5

12
+ q + 3q2 + 4q3 + 7q4 + 6q5 + 12q6 + O(q7) ∈ E2(11)

θ(φ2) = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 + O(q9) ∈ S2(11)

where Tp(φ2) = λpφ2 with λ2 = 4, λ3 = 1, λ5 = 1, λ7 = 4, . . .



Example - Nonsquare discriminant

Let Λ be as before with discriminant 29. By checking isometry we
compute w.r.t. basis [Λ′], [Λ]

[T2] =

(
1 2
4 3

)
, [T3] =

(
4 3
6 7

)
, [T5] =

(
18 9
18 27

)
, . . .

The constant function φ1 = [Λ] + [Λ′] is an Eisenstein series
with Tp(φ1) = (p2 + (1 + χ29(p)) + 1)φ1. Another eigenvector is
φ2 = [Λ]− 2[Λ′], with Tp(φ2) = λpφ2

λ2 = −1, λ3 = 1, λ5 = 9, λ7 = 4, λ11 = 17, . . .

But

θ(φ2) = q − 3

2
q2 +

3

2
q3 − 3q4 − 3q5 + 5q6 + 2q7 + O(q8)

is not an eigenform. We match it with the Hilbert modular form
labeled 2.2.29.1-1.1-a in the LMFDB.

https://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.29.1/holomorphic/2.2.29.1-1.1-a


Towards a bijection?

Would like to have a bijection between orthogonal modular
forms and Hilbert modular forms, but... Consider
Q(x) = x2

1 + x2
2 + x2

3 + x1x4 + x2x4 + 3x2
4 with Gram matrix

[TΛ] =


2 0 0 1
0 2 0 1
0 0 2 0
1 1 0 6


and disc(Λ) = 40.

Then dim S(Λ) = 1 6= 2 = dim S2(Z[
√

10]).

This is because of the lattice Λ2 with form
Q2(x) = x2

1 + x2
2 + 2x3 + x2x4 + 2x3x4 + 2x2

4 .

Although Λ2 /∈ gen(Λ1), it is everywhere locally similar to Λ1.



Similarity classes

We define the general orthogonal group

GO(V ) = {g ∈ GL(V ) : Q(gv) = µ(g)Q(v), µ(g) ∈ F×}
GO(Λ) = {g ∈ GO(V ) : gΛ = Λ}

and write GSO(V ) and GSO(Λ) for those with det(g) > 0.
Lattices Λ,Π are similar, written Π ∼ Λ, if there exists g ∈ GO(V )
such that gΛ = Π.
The similarity genus of Λ is

sgen(Λ) := {Π ⊆ V : Λp ∼ Πp for all p}.

The similarity class set scls(Λ) = sgen(Λ)/ ∼ is the set of
(global) similarity classes in sgen(Λ).



GO modular forms

The space of algebraic modular forms for GO(V ) of level Λ (with
trivial weight) is

M(GO(Λ)) := {f : scls(Λ)→ C} ' Chs(Λ)

M(GO(Λ)) has additional Hecke operators Tp at split primes.
We say that integral lattices Π ⊆ Λ ⊆ V are p-neighbors if

Λ/Π ' (R/pR)2 ' Π/pΛ,

and write N(Λ, p) for the set of p-neighbors of Λ.
For p - disc(Λ) define the Hecke operator

Tp : M(GO(Λ))→ M(GO(Λ))

φ 7→

[Λ′] 7→
∑

Π′∈N(Λ′,p)

φ([Π′])





Residually binary lattices

We say that Λ is residually binary at p if rank(Λ/pΛ) ≥ 2.

Example

The lattice Z4 with the form Q(x) = x2
1 + 7x2

2 + 7x2
3 + 49x2

4 is not
residually binary at 7.

If Λ is residually binary everywhere, can write Λp = Λp,1 ⊥ Λp,2

where Λp,1 and Λp,2 are binary, and disc Λp,1 = Rp for every p.
We define the fundamental discriminant of Λ to be the ideal
D = D(Λ) ⊆ R such that disc(Λp,2) = DpQ(Λp,2)2.

Example

If Λ is maximal, and K = F [
√
D], then D(Λ) = discK .

Let M = M(Λ) be the product of anisotropic primes.



Narrow class number one

In the case where Cl>0(F ) = 1, the result is simpler to describe.

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2022))

Let disc(Λ) = DN2 with N squarefree, K = F [
√
D]. Then

S(GO(Λ)) ↪→ GK |F\S2(NZK )

with image the orbits in S2(NZK ;W = ε)M-new

GK |F = Gal(K |F ) acts naturally on the space of Hilbert
modular forms.

For p | N, we set εp = −1 if p |M, else εp = 1.

Wp is the Atkin-Lehner involution at pZK | NZK .



The other forms

The space of orthogonal modular forms of weight (k, j) is

Mk,j(GO(Λ)) = {f : scls(Λ)→Wk,j : f (gx) = ρk,j(g)f (x)}.

Twisting by the spinor norm, we obtain all the spaces

Sk1,k2(NZK ;W = ε)M-new

The space S(O(Λ)) is identified as the forms invariant under
twists by Hecke characters.

If discV = 1, K = F × F , so that

Mk1,k2(NZK ) = Mk1(N)⊗Mk2(N).

When F = Q, this case was considered by Böcherer and
Schulze-Pillot (1991).



Special groups and Galois action

Can also define M(SO(Λ)) and M(GSO(Λ)). If p is split,
pZK = P1P2, then

Tp = TP1 + TP2 , Tp,2 = TP1,2 + TP2,2,

coming from splitting of the p2-neighbors (p-neighborhoods) to
two orbits.
Since over a local field, every lattice is stable under a reflection,
the natural quotient map

M(GSO(Λ))→ M(GO(Λ))

induces an isomorphism

M(GO(Λ)) = M(GSO(Λ))GO(V )/GSO(V ),

and GO(V )/GSO(V ) ' G (K |F ).



Key ideas - Quaternions and even Clifford

The even Clifford algebra B = C0(V ) is quaternion with center K .
Even Clifford extends to a functor

C0 : GSO(V )→ (B× × F×)/K×.

Theorem (A., Fretwell, Ingalls, Logan, Secord, and Voight (2024))

The even Clifford functor induces an isomorphism

C ∗0 : Mρ(C0(Λ)×, ψ−1 ◦ NmK |F )ALF (C0(Λ)) −→ MC∗0 ρ
(GSO(Λ), ψ).

Sends P-neighbors to P-neighbors.

Sends p1-neighbors to pZK -neighbors.

Also induces C0 : GO(V )/F× → AutF (B), with

0→ B×/K× ' AutK (B)→ AutF (B)→ Gal(K |F )→ 0.

∼= [ A1 × A1 = D2, equiv. sl2 ⊕ sl2 ∼= so4]



General narrow class number

If Cl>0(F ) 6= 1, M(GO(Λ)) −→ M(O(Λ)) is no longer surjective!

Example

Let F = Q(
√

3), and consider the lattice

[Λ] =


2 0 0

√
3

0 50 15
√

3 10
√

3

0 15
√

3 14 9√
3 10

√
3 9 8


with disc Λ = 25ZF , and consider a lattice Λ′ with [Λ′] = ε[Λ],
where ε = 2 +

√
3 ∈ R×>0.

Then Λ ∼ Λ′, and Λp ' Λ′p for all p but Λ 6' Λ′.
Thus the natural map cls(Λ)→ scls(Λ) is not injective.



Solution and minusforms

Proposition

There are certain finite abelian groups U = R×>0/R
×2 and

Xµ = Cl>F 0(K )∨ such that for every character ψU on U, we have

M(SO(Λ), ψU) ' M(GSO(Λ), ψ−1
U ◦ µ)Xµ

When ψU is nontrivial, C ∗0 maps these to Hilbert modular forms for
SL2(ZK ) with unit character ψU .

Example

Let F = Q(
√

3) and Λ with disc Λ = 25ZF as above, and let
ψU(ε) = −1 be nontrivial. We obtain an eigenform φ with

λ7 = 64, ap11 = 24, λp13 = 4, λ17 = 4, λ19 = 196,

which corresponds to f ∈ S2(Γ1
0(5ZF )) for SL2(ZF ), with

a7 = 8, ap11 =
√

24, ap13 = 2, a17 = 2, a19 = 14.



Applications

We obtain commutative diagrams of Hecke modules

S(O)
ALF (O)
GKOO

JL

��

oo
C∗0 // S(GO(Λ))

θ2

��

S(NZK ,W = ε)M-new
GK

// S (2)(Γ
(2)
0 (N), χK )

The bottom line is:

Yoshida lift when K = F × F and f , g are both cuspidal.

Saito-Kurokawa lift when K = F × F otherwise.

Asai lift when K is a field.

Shows that when K is a field (e.g. D = 4p (Kaylor, 2019)), θ2 is
injective (non-vanishing).
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